Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

The author introduces the concept of harmonically convex functions and establishes some Hermite-Hadamard type inequalities of these classes of functions.

متن کامل

On inequalities of Hermite-Hadamard type for co-ordinated (α1,m1)-(α2,m2)-convex functions

In the paper, the authors establish some integral inequalities of Hermite-Hadamard type for co-ordinated (α1,m1)-(α2,m2)convex functions on a rectangle of the first quadrant in a plane.

متن کامل

NEW OSTROWSKI TYPE INEQUALITIES FOR CO-ORDINATED s-CONVEX FUNCTIONS IN THE SECOND SENSE

In this paper some new Ostrowski type inequalities for co-ordinated s-convex functions in the second sense are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym12010013